Are There Potential Telehealth Applications For Implantable, Wireless Sensors In Healing Tissues?

In short

A new implantable sensor developed at New York’s Rensselaer Polytechnic Institute can wirelessly transmit data from the site of a recent orthopaedic surgery. Inexpensive to make and highly reliable, this new sensor holds the promise of more accurate, more cost-effective, and less invasive post-surgery monitoring and diagnosis.


Following an orthopaedic procedure, surgeons usually rely on X-rays or MRIs to monitor the progress of their patient’s recovery. The new sensors, created by Rensselaer faculty researcher Eric Ledet, would instead give surgeons detailed, real-time information from the actual surgery site. This in vivo data could lead to more accurate assessments of a patient’s recovery, or provide better insight into potential complications.

The technology

The wireless sensor measures only 4 millimeters in diameter and 500 microns thick. It needs no battery, no external power, and requires no electronics within the body. Instead, the sensor is powered by the external device, which is also used to capture the sensor data.

Researcher comments  

“Our new sensor will give surgeons the opportunity to make personalized, highly detailed, and very objective diagnoses for individual patients,” said Ledet, assistant professor in the Department of Biomedical Engineering at Rensselaer. “The simplicity of the sensor is its greatest strength. The sensor is inexpensive to produce, requires no external power source, yet it is robust and durable. We are very excited about the potential of this new technology.”

Sensing “what” though?

The sensors look like small coils of wire and are attached to commonly used orthopedic musculoskeletal implants such as rods, plates, or prostheses. Once implanted in the in vivo environment, the sensor can monitor and transmit data about the load, strain, pressure, or temperature of the healing surgery site. The sensor is scalable, tunable, and easy to configure so that it may be incorporated into many different types of implantable orthopedic devices.

Still don’t get it?

The researchers claim that one key benefit of this new technology is the possibility of more accurate assessments by physicians for when recovering patients are able to return to work without a risk of further injury.

“Having a stream of real-time in vivo data should take some of the approximation and subjectivity out of declaring a patient recovered and ready to return to work,” Ledet said.

Ledet has been working on this sensor technology for about five years, and has presented his progress at several conferences. His most recent presentation was earlier this month in San Francisco at the Orthopaedic Research Society (ORS) 2012 Annual Meeting.

We say

We’re forever saying how fervently we believe in new technologies, especially remote monitoring as a means of delivering better and cheaper healthcare in future, but we’re struggling to see how this one fits the bill. What are we assessing here, some parameter of the implant performance or the mobility of the joint and consequently the patient? We’d love to know, because while we can see a place for such as remote gait analysis or even overall activity level monitoring we’re struggling to see how we could monitor an implant and have it tell us whether it’s doing it s job and to what extent. Please explain someone.

Source: Rensselaer Polytechnic Institute